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Abstract

The aim of this thesis is to analyze the influence of non-linear thermal radiation

parameter on two dimensional, steady and incompressible natural convective flow

in a square tilted cavity. The cavity is assumed with adiabatic conditions on

the top and bottom walls, heated on the left wall and cooled on the right wall.

The governing equations for the heat exchange and fluid flow have been solved

numerically by utilizing Galerkin weighted residual finite element method. In

particular, velocity and temperature fields are discretized using the biquadratic

Q2 element and for pressure discontinuous P1 element is utilized. The impact of

physical parameters on the heat and fluid flow are discussed and analyzed in terms

of streamlines, isotherms and some useful plots. Effect of the physical parameters

in specified ranges such as thermal radiation parameter (Rd = 0 − 3), Prandtle

number (Pr = 0.025, 6.2, 0.71 and 998), Rayleigh number (Ra = 103 − 105) and

inclination angle (Φ = 15◦, 30◦, 60◦, 75◦) on the fluid flow and heat transfer has

been investigated.
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Chapter 1

Introduction

The transfer of heat by the movement of fluids from one place to another is called

convective heat transfer. Convective heat transfer is combination of heat diffu-

sion and bulk fluid flow simultaneously. The study of natural convection has been

extensively investigated and has gained considerable attention in various fields of

engineering including thermoelastic damping [1], cooling of devices [2], welding

[3] and many more. Convective heat transfer has wide applications on industrial

level e.g., heat exchanger [4], solar collectors [5], room ventilation [6], chemical

reactor [7] and many others because of its simplicity and low cost. Due to this

tremendous and widespread expansion of free convection applications, many re-

searchers are incessantly investigating the convective heat flow in various physical

systems such as magnetohydrodynamics convection [8], forced convection [9], con-

vection of nanofluids [10], etc. Natural convection in cavities with heat generated

fluids has been extensively studied [11–13]. Convective flow within square cavity

is one of the most investigated solution of Naiver-Stokes equations which plays an

significant role in the study of fluid dynamics. The name of Navier-Stokes is de-

rived from Claud Luis Navier and George Gabriel Stokes. Navier-Stokes equations

have lots of practical applications in physical world.

Basak et al. [14] performed the simulations on natural convective flow in tilted

square enclosure. The impact of inclination angles on a fluid flow via streamlines,

1



Introduction 2

heat flow via heatlines and entropy genaration because of transfer of heat and

fluid friction throughout free convection inside a tilted square enclosure was an-

alyzed. The enclosure is surrounded by two adiabatic walls, cold (CB) and hot

(DA) wall. Numerical results are presented for various parameters. The Galarkin

finite element methods was utilized in order to explain the numerical procedure of

nonlinear partial differential equation. The convective heat transfer was observed

both analytically and numerically in a square enclosure.

Ozoe et al. [15] investigated the heat transfer rate experimentally as well as

numerically within an inclined cavity in which the inclined side is kept at constant

hot temperature while the opposite side was provided with low temperature. Ra-

soul et al. [16] numerically inspected the influence of inclined cavity on laminar

natural convection for various Prandtl and Rayleigh numbers. It was concluded

that an increase in the inclination angle results into a decrease in the Nuavg num-

ber, irrespective of Prandtl and Rayleigh numbers. More comprehensive study on

free convection with the effect of inclination angle was also examined by Cotton

et al. [17], Farhny and Kuran [18] and Hamady et al. [19] for various parameters

and arbitrary inclination angles. Shiralker and Tien [20] investigated the simul-

taneously differential heating effect of the vertical wall as well as the horizontal

wall of the square enclosure. Numerical study of the free convective flow in a

rectangular enclosure cooled from one side and heated on bottom was studied by

Ganzoralli and Milanez [21]. Khanafer et al. [22] numerically inspected free con-

vection in square enclosure filled with alumina-water nanofluid. It was concluded

that depending on the model used, the heat transfer may increase or decrease for

viscosity and thermal conductivity of the nanofluids. Selimefendigil and Öztop

[23] also inspected the problem of free convection numerically by using cooling

and heating sinusoidal temperature profiles on one side in a tilted enclosure filled

with water-based nanofluid.
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Similarly, Abu-Nada [24] studied the enhancement in transfer of heat in a differ-

entially heated enclosure of natural convection using varying properties of alumina-

water and copper-water nanofluid. For high Rayleigh numbers, their results showed

that the Nuavg was more effective to the models of viscosity rather than to the

models of thermal conductivity. Cianfrini et al. [25] investigated the influence

of the angle of inclination on heat transport in a square enclosure with opposite

walls being differentially heated. They obtained the significant effect of the angle

of inclination on overall heat transport in both x-direction and y-direction which

is comparatively larger than that of untilted case.

Thermal radiation is electromagnetic radiation produced by the thermal motion

of charged particles in matter. Mehmood et al. [26] numerically investigated

the MHD mixed convection in alumina-water nanofluid-filled square porous cavity

using KKL model considering the effect of non-linear thermal radiation and in-

clined magnetic field. Galarkin finite elements method was adopted to explain the

governing equation. It was observed that radiation parameter declines the heat

transfer due to hot wall. Shekar and Kishan [27] examined the natural convective

heat transfer in a porous square enclosure filled with nano-fluids in the presence

of thermal radiation. They noticed that radiation parameter favours the thermal

boundary layer thickness.

Thermal radiation is usually produced as an outcome of emission by hot wall.

It is important to mention here that some practical applications of thermal ra-

diation in sciences and engineerings exist. Mahapatra et al. [28] analyzed free

convection in a square enclosure with the impact of linear thermel radiation. Gha-

lambaz et al. [29] inspected the free convection in a porous square cavity filled by

a nanofluid considering linear thermal radiations and viscous dissipations effect. It

was noticed that heat transfer increases with thermal radiation parameters. Sheik-

holeslami et al. [30] performed numerical simulation for MHD natural convection

of alumina-water nanofluid filled enclosure under the influence of linear thermal

radiations.
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1.1 Thesis Contributions

The aim of this thesis is to examine the natural convection heat flow with non-

linear thermal radiation inside an inclined square cavity. The system of governing

equations is solved by using Galerkin finite element technique, particularly Q2 of

3rd order accuracy is used to discretize the velocity as well as temperature and

discontinuous P1 element of 2nd order accuracy is used for the pressure [31]. The

numerical simulations of the dimensionless velocity and temperature are analyzed

by using the streamlines and isotherms, respectively, while the Nuavg number is

viewed by some useful plots against different physical parameters and inclination

angle.
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1.2 Thesis Outline

This thesis is further organized into four chapters.

Chapter 2 contains some basic definitions, concepts and physical laws related

to fluid dynamics that are helpful in understanding the work in the subsequent

chapters.

Chapter 3 presents the review of the research paper [14]. In this chapter, the

steady natural convective flow is inspected in square cavity inclined at different

angles. A suitable transformation is used to convert equations governing the flow

in to non-dimensional form and solve these nonlinear coupled PDEs numerically

using Galerkin finite element method. Numerical results are calculated and ana-

lyzed for various parameters such as Pr, Ra and inclination angle Φ.

Chapter 4 extends the work of Basak et al. [14] with the idea of non-linear

thermal radiations. The non-dimensional governing equations are discretized us-

ing biquadratic element Q2, for velocity and temperature, and discontinuous P1

element for pressure. Simulations are performed for various parameters such as

non-linear thermal radiation, Pr, Φ, Rd and Ra, and their corresponding influence

can be seen through streamlines and isotherms.

Chapter 5 summarizes the conclusion of the present work.

Bibliography contains all the references used in thesis are listed at the end.



Chapter 2

Basic Definitions and Governing

Equations

In this chapter, some basic concepts, terminologies, definitions and governing laws

[32] are explained, which will be helpful in continuing this work for the next

chapters. The procedure of finite element method is also explained and illustrated

by a two dimensional Poisson problem.

2.1 Fluid Related Terminologies

Definition 2.1. (Fluid)

The material which alters continuously by the effect of shear stress is called fluid.

It doesn’t matter that what kind of shear stress it is.The shape of the fluid is also

changed through the act of shear stress. Liquids and gases are the examples of

fluids.

Definition 2.2. (Fluid Mechanics)

The area of physical sciences in which we study the action of a fluid in static or

dynamic condition is called fluid mechanics. It is further categorised into fluid

statics and fluid dynamics.

6
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Definition 2.3. (Fluid Statics)

From the family of fluid mechanics, a branch that deals with the fluid and its

characteristics at a fixed position, is called fluid statics.

Definition 2.4. (Fluid Dynamics)

The branch that covers the properties of fluid in the state of motion from one

place to another is called fluid dynamics.

Definition 2.5. (Density)

Concentration of mass per unit volume is termed as density of material. Symbol-

ically, it is represented by greek letter ρ and mathematically written as

ρ =
m

V
. (2.1)

Here V and m are the volume and mass of the material, respectively.

Definition 2.6. (Pressure)

The component of applied force perpendicular to the surface of an object per unit

area is termed as pressure. It is represented by P and mathematically, it is written

as

P =
F

A
, (2.2)

where F and A denote the applied force and area of the surface, respectively.

Definition 2.7. (DynamicViscosity)

The extent which measures the resistance of fluid tending to cause the fluid to flow

is called dynamic viscosity, also known as absolute viscosity. This resistance arises

from the attractive forces between the molecules of the fluid. Usually liquids and

gasses have non-zero viscosity. It is denoted by symbol µD and mathematically, it

can be written as

µD =
shear stress

shear strain
. (2.3)

Here µD is called the coefficient of viscosity. Unit of viscosity in SI system is

kg/ms or Pascal-second.
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Definition 2.8. (Kinematic Viscosity)

It is the ratio of the dynamic viscosity to the density. Symbolically, it can be

written as ν. Mathematically,

ν =
µD
ρ
, (2.4)

where, the dimension of kinematic viscosity is [L2T−1] and its unit in SI system is

m2/s.

Definition 2.9. (Stress)

Stress is a force which acts parallel or perpendicular to the material surface per

unit its area and is denoted by σ. It is a tensor quantity. Mathematically, it can

be written as;

σ =
F

A
, (2.5)

where F represents force and A denotes area.

Definition 2.10. (Shear Stress)

It is a type of stress in which force vector acts parallel to the material surface or

cross section of a material.

Definition 2.11. (Normal stress)

Normal stress is a type of stress in which force vector acts perpendicular to the

surface of the material or cross section of a material.

Definition 2.12. (Yield Stress)

The property of material at which a matter begins to deform physically until the

force acting on it and will back to its original form when the applied force is

released.
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2.2 Classification of Fluids

Definition 2.13. (Ideal Fluid)

An ideal fluid is defined as the fluid which is incompressible and has no viscosity

(µ=0). In other words, the fluid which does not lose kinetic energy is called ideal

fluid. It requires no viscosity due to non-availability of shear force. It is also

known as inviscid fluid.

Definition 2.14. (Real Fluid)

The fluid which is compressible in nature and contains some viscosity (µ > 0) is

said to be real or viscous fluid. As the fluid moves, certain amount of resistance

is always offered by the fluid. It is known as viscous fluid or viscid fluid.

Definition 2.15. (Newtonian Fluid)

The fluid for which the shear stress varies directly and linearly as the deformation

rate is known as Netownian fluid. Shear stress of Newtonian fluid is mathemati-

cally defined as

τyx ∝
(
du

dy

)
,

τyx = µD

(
du

dy

)
, (2.6)

where τyx is shear stress and u denotes the x-component of velocity and µD denotes

the dynamic viscosity. The common examples of Newtonian fluids are mercury,

air, water, glycerol, oxygen, gas, alchohol and milk etc.

Definition 2.16. (Non−Newtonian Fluid)

The fluids for which the shear stress does not vary linearly as the deformation rate

are known as Non-Newtonian Fluids. Mathematically, it can be expressed as

τyx ∝
(
du

dy

)m
, m 6= 1

τyx = µ

(
du

dy

)m
, (2.7)
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where µ denotes the apparent viscosity and m is the index of the flow performance.

The common examples are toothpaste, ketchup, starch suspension, custard, sham-

poo, paint and blood etc. Note that for m = 1, the equation (2.6) reduces to the

Newton’s law of viscosity.

2.3 Types of Flows

Definition 2.17. (Flow)

An object exhibits the flow if unbalanced forces lead to an unbounded distortion.

Several types of flow are as follow:

Definition 2.18. (Laminar Flow)

In fluid dynamics, laminar flow occurs when a flow is in parallel/closed channel or

flat plates with no interruption between the plates. Typically, each particle has

a definite path and the particles of the path in the fluid don’t cross each other.

Rising of cigarette smoke is an example of laminar flow.

Definition 2.19. (Turbulent Flow)

When the fluid undergoes irregular fluctuations or flowing faster, this type of flow

(liquid or gas) is called turbulent flow. Turbulent flow moves randomly in any

direction and has no definite path and cannot be handled easily. It goes changes

both in magnitude and direction.

Definition 2.20. (Steady Flow)

The flow that doesn’t change with respect to time is called steady flow. Mathe-

matically, it can be written as
dη∗

dt
= 0, (2.8)

where η∗ is any fluid property.

Definition 2.21. (Unsteady Flow)

The flow that continuously changes with respect to time, is expressed as unsteady

flow. Mathematically, it can be written as

dη∗

dt
6= 0, (2.9)
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where η∗ is fluid property.

Definition 2.22. (Compressible Flow)

The flow in which the material density varies during fluid flow is said to be com-

pressible flow. Compressible fluid flow is used in high-speed jet engines, aircraft,

rocket motors also in high-speed usage in a planetary atmosphere, gas pipelines

and in commercial fields. Mathematically, it is expressed as

ρ(x, y, z, t) 6= c, (2.10)

where c is constant.

Definition 2.23. (Incompressible Flow)

A type of fluid flow in which material density during the flow remains constant is

said to be incompressible flow. Mathematically, defined as

ρ(x, y, z, t) = c, (2.11)

where c is constant.

Definition 2.24. (Uniform Flow)

The flow in which the velocity of each fluid particle remains unchanged from point

to point at any given instant of time, having same direction as well as magnitude

during fluid motion called as uniform flow. It is mathematically expressed as

∂V

∂s
= 0, (2.12)

where V is the velocity and s is the displacement in any direction.

Definition 2.25. (Nonuniform Flow)

The flow in which the velocity of fluid particle changes from point to point at

any given instant of time, either having different direction or different magnitude

during fluid motion called as uniform flow. Mathematically, it is expressed as

∂V

∂s
6= 0, (2.13)
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where V is the velocity and s is the displacement.

Definition 2.26. (Internal Flow)

Fluid flow which is confined by the solid surface. The examples of the internal

flow are the flow through pipes or glass.

Definition 2.27. (External Flow)

A type of flow which is not bounded by the solid surface.Water flow in the rivers

and oceans are the examples of external flow.

2.4 Heat Transfer and Related Properties

Definition 2.28. (Heat Transfer)

It is the energy transfer from high temperature reservior to low temperature re-

servior due to difference of temperature. When there is a difference of temperature

in a medium or between media, heat transfer must take place. This phenomenon

can occur in term of following three mechanisms.

Definition 2.29. (Conduction)

In this process, the transmission of heat through matter occurs by the interaction

of free electrons and molecules. In other words, when free electrons move from one

object to another due to molecular interaction without disturbance or motion of

material as a whole is known as a conduction. Mathematically, it is expressed as

q = −κA
(
4T
4n

)
, (2.14)

where κ denotes the constant of thermal conductivity, A denotes area and 4T
4n

denotes gradient of temperature respectively.

Definition 2.30. (Convection)

The mechanism in which fluid is forced by external processes and when thermal

energy expands in gravitational fields by the interaction of buoyancy forces is called

convection. In other words, convection is the process in which heat transfer occurs

by the movement of fluids from one place to another such as air, water etc. The
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convection phenomena take place through diffusion or advection. Mathematically,

it is expressed as

q = hA(Ts − T∞), (2.15)

where h, A, Ts and T∞ represent the heat transfer coefficient, the area, the tem-

perature of the surface and the temperature away from the surface respectively.

It is further categorised into natural convection, force convection and mixed con-

vection.

Definition 2.31. (Force Convection)

Force convection is such type of communication for which motion of fluid is pro-

duced by an external source (like pump, fan etc) is categorized as force convection.

It is also used in machines, air conditioning, central heating and in many other

turbines.

Definition 2.32. (Natural Convection)

When motion of fluid is not generated by an independent source then it is said to

be natural convection or called free convection. Simplifying more, it occurs due to

the temperature gradient difference having effect on density. Natural convection

can only exists in gravitational field.

Definition 2.33. (Mixed Convection)

A flow mechanism which is simultaneously contributed by both force and free con-

vection processes and acting simultaneously. Mixed convection is always realized

when small number of velocities are characterized on colling and heating of walls.

Definition 2.34. (Radiation)

In radiation process, heat is transferred through electromagnetic waves or rays.

In fluids both convection and radiation are most significant in flow of heat but in

solids radiation is usually negligible. For example, if a material object is placed

under sun rays, after a while the material object is heated. Such phenomena takes

place due to radiation. Mathematically, it can be written as

q = EσA[(4T )4], (2.16)
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where E, σ, (4T )4, A, q are the emissivity of the material, the constant of Ste-

fan Boltzmann (5.670× 10−8), the variation of the temperature, the area and the

heat transfer respectively.

Definition 2.35. (Thermal Conductivity)

The property of a substance which measures the ability to transfer heat is called

thermal conductivity, denoted by k. Mathematically, it can be written as

dQ

dt
= −kAdT

dx
, (2.17)

where dQ
dt

, A, dT
dx

are the heat flow, the area and the temperature gradient, re-

spectively. Thermal conductivity of most liquids decreases with the increase of

temperature except water. Its SI unit is Kg.m
s3.K

and the dimension is [MLT−3θ−1].

Definition 2.36. (Thermal Diffusivity)

The ratio of the unsteady heat conduction (k) of a substance to the product of

specific heat capacity (cp) and density (ρ) is called thermal diffusivity. It quantify

the ability of a substance to transfer heat rather to store it. Mathematically, it

can be written as

α =
k

ρcp
. (2.18)

2.5 Basic Governing Equations

2.5.1 Continuity Equation

The equation of continuity is derived from the mass conservation law and mathe-

matically, it is expressed by

∂ρ

∂t
+∇.(ρV) = 0, (2.19)

where t is the time. If fluid is an incompressible, then it is expressed by

∇.V = 0. (2.20)
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2.5.2 Momentum Equation

Each particle of fluid obeys Newton’s second law of motion which is at rest or in

steady state or accelerated motion. This law states that the combination of all

applied external forces working on an object is equal to the time rate of change of

its linear momentum. In vector notation this law is expressed as

ρ
DV

Dt
= div τ + ρb, (2.21)

For Navier-Stokes equation

τ = −pI + µA1, (2.22)

where A1 is the tensor and first time it was produced by Rivlin-Erickson.

A1 = grad V + (grad V)t, (2.23)

In the above equations, D
Dt

denote the material time derivative or total deriva-

tive, V denote velocity field, ρ denote density, τ here denotes the Cauchy stress

tensor, b the body forces, p is the pressure and µ the dynamic viscosity.

The stress tensor τ is expressed in the matrix form as

τ =


σxx τyx τzx

τxy σyy τzy

τxz τyz σzz

 , (2.24)

where σxx, σyy and σzz are normal stresses, others wise the shear stresses. For

two-dimensional flow, we have V = [u(x, y, 0), v(x, y, 0), 0] and thus

grad V =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 , (2.25)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.26)

Similarly, we repeat the above process for Y component as follows:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (2.27)

2.5.3 Energy Equation

The energy equation is

ρcp

(
∂

∂t
+ V∇

)
T = k∇2T + τL, (2.28)

where (cp) denotes the specific heat constant, ρ the density of basic fluid, L

denotes the rate of strain tensor and T the temperature of the fluid. The Cauchy

stress tensor τ for viscous and incompressible fluid is expressed by

τ = −pI + µA1, (2.29)

where A1 is the tensor, p the pressure and µ the dynamic viscosity.

2.6 Dimensionless Numbers

Definition 2.37. (Reynolds Number (Re))

It is the most significant dimensionless number which is used to identify the dif-

ferent flow behaviors like laminar or turbulent flow. It helps to measure the ratio

between inertial force and the viscous force. Mathematically,

Re =
LU

ν
, (2.30)

where L represents the characteristics length, U denotes the free stream velocity

and ν stands for kinematic viscosity.
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Definition 2.38. (Prandtl Number (Pr))

It is the relationship between the momentum diffusivity (ν) and thermal diffusivity

(α). Mathematically it can be expressed as,

Pr =
ν

α
=⇒ µ/ρ

κ/(cpρ)
=⇒ µcp

κ
, (2.31)

where µ is the dynamic viscosity, cp stands for the specific heat constant and κ

denotes thermal conductivity. The relative thickness of thermal and momentum

boundary layer are controlled by Prandtl number.

Definition 2.39. (Nusselt Number (Nu))

The dimensionless number, used in heat transfer, is the ratio of convective to

conductive heat transfer to the boundary. Mathematically,

Nu =
hL

κ
. (2.32)

Here h represents the convective heat transfer, L denotes characteristics length

and κ stands for thermal conductivity.

Definition 2.40. (Rayleigh Number (Ra))

It is the relationship between the kinematic diffusivity to heat diffusivity multiplied

by the ratio of viscosity forces and buoyancy forces. It is a dimensionless number

introduced by Lord Rayleigh. It is denoted by Ra and mathematically it can be

written as

Ra =
gβ(Th − Tc)L3Pr

ν2
, (2.33)

where g, β, L3 and ν represents the gravitational accelaration, volume expansion

coefficient, characteristic length and kinematic viscosity.

2.7 Finite Element Method (FEM)

It is a numerical scheme for finding the approximate solution of PDEs. It sub-

divides a huge problem into smaller parts, named as the finite elements. A finite
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element method is simulated by a weak formulation, one or more solution algo-

rithms and post processing procedure.

Definition 2.41. (Galerkin Finite Element Method)

The area of numerical analysis in which Galerkin method is the class of methods

for converting the continuous problems into discrete problems. In principal, it is

similar to variational method for applying parameters to the functional space, by

interchanging the equations to the weak formulation [33]. It contains the following

steps

1. Multiply both sides of governing equations of the problem by test function

w ε W , that is vanishing on the boundaries of the domain, where W is a test

space.

2. Perform integration by parts such that some derivatives will be transferred

from trial to test function.

3. Impose natural boundary conditions in the boundary integrals and essential

boundary conditions to the trial and test spaces. This is called the variational

formulation or weak formulation.

4. Generate triangulation or mesh. Divide the entire domain into non-overlapping

elements. In one dimension, mesh is a set of points that is, x0 = 0, x1, x2, ....xN =

1, where xi is called a node and ei = {xi, xi+1} is an element such that

ei
⋂
ej=ϕ for i 6=j. hi = xi − xi−1 for i = 0, 1, ...N is called mesh size.

5. Approximate the infinite dimensional trial space U and test space W by finite

dimensional spaces Uh and Wh, respectively where Uh (finite dimensional

space) ⊂ U (solution space).

6. Choose the basis functions ϕ1,ϕ2,...ϕN of wh, so that every test function whε

Wh can be written as wh=
∑
wiϕiε Wh for i = 1, ...N .

7. Find uhεUh such that a(uh, wh)=b(wh) ∀ wh=
∑
wiϕi εWh for i = 1, ...N ,

⇒ a(uh, ϕi) = b(ϕi), where i = 1, ..., N .

Substituting uh=
∑
ujϕj, for j = 1, ...N ,
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a(
∑
ujϕj, ϕi) = b(ϕi) for i, j = 1, 2, 3..., N ,

⇒
∑
a(ϕj, ϕi)uj = b(ϕi) for i, j = 1, 2, 3..., N .

where uj are the solution values at the nodes. Also a(u,w) is bilinear form

and b(w) is the linear form.

8. (AU = B) is transformed which assembles the algebraic equation by varying

i and j in row and column wise

To illustrate the method of Galerkin weighted residual, we consider the following

example.

Example: Consider a 2D poisson problem

−∆u = f, in Ω (2.34)

u = 0, on ∂Ω (2.35)

where f is some known function and u is to find, Ω is domain of the problem which

is open, bounded and connected and ∂Ω is the boundary.

The Variational Form:

• The exact solution u of the Eq. (2.34) should be twice continuously differen-

tiable and satisfying Eq. (2.34). Let w be a test function such that w(x) = 0

on the boundary of the domain.

• Weighted residual integral statement of the poisson problem Eq. (2.34) is

−
∫

Ω

w∆u dΩ =

∫
Ω

wf dΩ, (2.36)

• 2nd order derivatives of u can be reduced to 1st order by using Green’s for-

mula. ∫
∂Ω

w
∂u

∂n
ds =

∫
Ω

∇w∇u dΩ +

∫
Ω

w∆u dΩ, (2.37)
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• Using Eq. (2.37) in Eq. (2.36) , we obtain

−
∫
∂Ω

w
∂u

∂n
ds+

∫
Ω

∇w∇u dΩ =

∫
Ω

wf dΩ, (2.38)

where the boundary integral vanishes due to the homogeneous boundary

conditions, so we are left with

∫
Ω

∇w∇u dΩ =

∫
Ω

wf dΩ, (2.39)

• Elemental weak form is

∫
Ωe

∇w∇u dΩ =

∫
Ωe

wf dΩ, (2.40)

• In xy plane, Eq. (2.40) can be written as

∫
Ωe

(
∂w

∂X

∂u

∂X
+
∂w

∂Y

∂u

∂Y

)
dΩ =

∫
Ωe

wf dΩ, (2.41)

• Approximate solution over an element is

ue =
NEN∑
j=1

uej S
e
j (x, y). (2.42)

where Sj is a shape function and uj are the solution values at nodes.

• Assemble local matrices into global matrix (AU = B) and solve the system

for U .
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2.7.1 Advantages

Some of the basic features of Finite Element Method given below:

• Modeling of complex geometries and irregular shapes are easier [32].

• FEM can handle a wide variety of engineering problems [34].



Chapter 3

Simulations of Natural

Convective Flow in a Square

Cavity

In this chapter, we analyze the numerical study of the steady, incompressible and

two dimensional natural convective flow in a square tilted cavity. By using an

appropriate transformation, we reduce the system of governing equations such

as continuity, momentum and energy equation into dimensionless coupled partial

differential equations . These dimensionless governing equations have been solved

by employing the finite element technique based on the Galerkin weighted residual

method. The impact of governing parameters is analyzed through streamlines,

isotherms and graphs. In this chapter, the review of the article [14] is presented.

3.1 Problem Description and Mathematical

Formulation

Let us consider a two-dimensional, steady and incompressible free convective flow

in a tilted square cavity. The schematic diagram of the problem under investi-

gation with boundary conditions is shown in Figure 3.1. The cavity is tilted at

22
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an inclination angle Φ with horizontal coordinate. The wall AD of the cavity is

maintained hot at temperature Th and the wall BC is maintained cold at temper-

ature Tc, whereas two parallel walls DC and AB of the cavity are considered to

be adiabatic. By means of Boussinesq approximation [35] change in density which

arise due to variation in the fluid temperature is approximated while other physi-

cal properties of the density differences are ignored except in the buoyancy term.

The equation of continuity, momentum and energy under the given assumptions

read the following.

Figure 3.1: Geometry of the problem.

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

x-momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gβ(T − Tc) sin Φ, (3.2)
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y-momentum equation:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gβ(T − Tc) cos Φ, (3.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (3.4)

Here u, v denote the components of velocity along x and y direction respectively,

p represents the pressure of the fluid, ρ is the fluid density, ν is kinematic fluid

viscosity, acceleration due to gravity is g, the expansion coefficient is β, fluid tem-

perature is T , Tc is the cold right wall temperature, Φ is an inclination angle and

α is the thermal diffusivity.

For the velocity and temperature fields the dimensional form of boundary con-

ditions on each wall of the cavity are given by

• On the horizontal walls AB and CD:

u(x, y) = 0, v(x, y) = 0,
∂T

∂n
= 0 (3.5)

• On the right wall BC:

u(x, y) = 0, v(x, y) = 0, T = Tc (3.6)

• On the left Wall DA:

u(x, y) = 0, v(x, y) = 0, T = Th (3.7)

where n denotes the normal vector.
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3.1.1 Dimensionless Form of the Governing Equations

The dimensionless form of the Eqs. (3.1)-(3.4) has been obtained by using the

following dimensionless parameters [14]

X =
x

L
, Y =

y

L
, U =

uL

α
, V =

vL

α
, P =

pL2

ρα2
,

θ =
T − Tc
Th − Tc

, P r =
ν

α
, Ra =

gβ(Th − Tc)L3Pr

ν2
.

The above parameters lead to the following dimensionless governing equations

∂U

∂X
+
∂V

∂Y
= 0, (3.8)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+RaPrθ sin Φ, (3.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+RaPrθ cos Φ, (3.10)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
. (3.11)

The dimensionless boundary conditions on each wall of the cavity for the velocity

and temperature fields are given by

• On the horizontal walls AB and CD:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂n
= 0 (3.12)

• On the right wall BC:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 0 (3.13)

• On the left wall DA:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1 (3.14)
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where n denotes the normal vector to the corressponding boundary compo-

nent.

3.2 Numerical Procedure

For the solution, the non-dimensional governing Eqs. (3.8)-(3.11) with the bound-

ary conditions (3.19)-(3.21) have been carried out numerically by finite element

formulation based on the Galerkin weighted residual technique by using the bi-

quadratic element for velocities (U , V ) and temperature (θ), and discontinuous P1

element for pressure [31].

Strong Form of Governing Equations:

∂U

∂X
+
∂V

∂Y
= 0, (3.15)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+RaPrθ sin Φ, (3.16)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+RaPrθ cos Φ, (3.17)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
. (3.18)

The Boundary Conditions:

• On the horizontal walls AB and CD:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂n
= 0 (3.19)

• On the right wall BC:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 0 (3.20)
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• On the left wall DA:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1 (3.21)

where n denotes the normal vector to the corressponding boundary compo-

nent.

3.2.1 Weak Formulation/Variational Form

Variational formulation method/multiplier method or weak form is an approch

in which governing equations (strong form) are transform into integral equations

(weak form) by multiplying governing equations with suitable test function and

integrated over the whole domain (Ω). In this section, Eqs. (3.15)-(3.18) together

with the boundary conditions (3.19)-(3.21) illustrate to weaker form. First we

multiply both sides of momentum equations and the temperature equation by test

function w ∈W and the continuity equation is multiplied by test function q ∈ Q

and then integrate over the whole domain where W and Q are test spaces. The

test space W = (H1(Ω), H1(Ω), H1(Ω)) is considered for the velocity components

and temperature, and Q = L2(Ω) is the test space for the pressure component.

Thus, the variational/weak formulation of Eqs. (3.15)-(3.18) reads as follows:

Find (U , V , θ, P ) ∈W×Q such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
wdΩ− Pr

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
wdΩ

−RaPr sin Φ

∫
Ω

θwdΩ +

∫
Ω

∂P

∂X
wdΩ = 0, (3.22)

∫
Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
wdΩ− Pr

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
wdΩ

−RaPr cos Φ

∫
Ω

θwdΩ +

∫
Ω

∂P

∂Y
wdΩ = 0, (3.23)
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∫
Ω

(
∂U

∂X
+
∂V

∂Y

)
qdΩ = 0, (3.24)

∫
Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
wdΩ−

∫
Ω

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
wdΩ = 0. (3.25)

for all (w, q) εW×Q.

In the Galerkin discretization, the infinite dimensional test and trial spaces are

approximated by finite dimensional spaces. In particular, following are the trial

and test spaces

Trial Spaces:

U ≈ Uh, V ≈ Vh, θ ≈ θh and P ≈ Ph.

Test Spaces:

W ≈Wh, Q ≈ Qh.

The Galerkin discretization results into following non-linear discretized integral

equations

Pr

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
whdΩ

−RaPr sin Φ

∫
Ω

θhwhdΩ +

∫
Ω

∂Ph
∂X

whdΩ = 0, (3.26)

Pr

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
whdΩ

−RaPr cos Φ

∫
Ω

θhwhdΩ +

∫
Ω

∂Ph
∂Y

whdΩ = 0, (3.27)∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qhdΩ = 0, (3.28)∫

Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂θh
∂X

+ Vh
∂θh
∂Y

)
whdΩ = 0. (3.29)

In the next step, discretized test and trial functions are approximated by using
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finite element approximations. Thus, the above system of discrete integral equa-

tions lead to the following block matrix
Pr L+N(U, V ) 0 B1 −RaPr sin Φ M

0 Pr L+N(U, V ) B2 −RaPr cos Φ M

BT
1 BT

2 0 0

0 0 0 L+N(U, V )


︸ ︷︷ ︸

A


U

V

P

θ


︸ ︷︷ ︸

U

=


F 1

F 2

F 3

F 4


︸ ︷︷ ︸

F

(3.30)

where,

Uh =
NN∑
j=1

Uj φj(x, y), Vh =
NN∑
j=1

Vj φj(x, y), θh =
NN∑
j=1

θj φj(x, y),

Ph =
MN∑
k=1

Pk Sk(x, y),

A is known as “block matrix”, U is called “solution vector” and F is expressed

as “load vector”, the corresponding R.H.S after the implimentaion of boundary

conditions. In the block matrix (3.30), L is the Laplace marix, M is mass matrix

and N is the convective matrix. B1 and B2 are the pressure matrices, BT
1 , BT

2

are their corresponding transpose matrices and φj, Sk are shape function corre-

sponding to spaces (H1(Ω)) and (L2(Ω)). By using the bi-quadratic Q2-element

of 3rd order accuracy the velocity components and temperature are discretized

and pressure is approximated by P disc
1 -element of 2nd order accuracy (see [31] for

details). The coupled non-linear equation are linearized by the Picard iteration

method and the Guassian elimination method is utilized to solve the associated

linear subproblems. Some tolerance value for the convergence of iterative scheme

is prescribed to see the absolute difference of the two consecutive iteration values

to the preceding iteration values. The stopping criterion to the iterative scheme

is given by ∣∣∣∣Υn+1 −Υn

Υn+1

∣∣∣∣ ≤ 10−6, (3.31)
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where n denotes the iteration number and Υ is used as variable to represent U ,

V , P , θ .

3.3 Code Validation

In order to validate the code adopted for the numerical solution of equations

governing the natural convective flow, the comparison of current results with some

of the earlier published work on free convection [1–4] are displayed in Table 3.1.

Results obtained from the our code are in good agreement with the published

results [1–4].

Table 3.1: Validation of the current code results with some published results
of Refs. [1–4].

Ra Present study Ref. [1] Ref. [2] Ref. [3] Ref. [4]
103 1.116 1.118 1.117 1.115 1.121
104 2.246 2.243 2.246 2.226 2.286
105 4.520 4.519 4.518 4.508 4.546

3.4 Results and Discussion

Galerkin weighted residual method is utilized to solve the equations governing

the heat transfer and fluid flow. The obtained numerical results are visualized

by means of streamlines and isotherms in the square inclined cavity which can be

seen through Figures 3.2-3.4. The cavity for the given problem is considered with

two walls (AB and CD) adiabatic walls, where the wall AD is kept at maximum

temperature and the wall BC is kept cold. Effect of governing parameters on the

flow such as Prandtl number, Rayleigh number and inclination angle for various

considered values is observed.

Figure 3.2(a)-(d) illustrates the variation of the inclination angles (Φ = 15◦, 30◦

60◦ and 75◦) on fluid flow in an inclined cavity with Ra = 103 and Pr = 0.025. At
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Ra = 103, the isotherms are found to be slightly curved nature due to inclination

angle effect. For all inclination angles, the isotherms are flattened near the top

section of wall BC (cold wall) and lower section of wall DA (hot wall). Flow of

the fluid inside square cavity is weak which can be viewed by low intensity of

streamlines. The flow strength with augmentation in inclination angle decreases

at low Rayleigh number as |ψ|max = 1.16, 1.16, 0.85 and 0.50 for Φ = 15◦, 30◦, 60◦

and 75◦, respectively. The flow strength increases with the increment in Rayleigh

number due to onset of convection. For Ra = 104 with Pr = 0.025, the isotherms

in core of the enclosure are gradually contorted for all inclination angles. The

convection starts gradually inside the cavity for Ra = 104.

Figure 3.3(a)-(d) depicts the fluid flow for Ra = 105 and Pr = 0.025 inside

the cavity with varying inclination angles. The buoyancy driven forces with the

Rayleigh number increases and thus convection at high Ra (Ra = 105) dominates

in the enclosure. At Ra = 105, it is observed that the isotherms are extremely

distorted for all inclination angles at the middle section of cavity due to dominance

of convection. In contrast to previous case (Ra = 103), the isotherms for all Φ

are found to be closed at top of wall BC (cold wall) and at the bottom of left

wall DA (hot wall). The streamlines contours follow the similar circular pattern

as in the previous case (Ra = 103). The flow intensity inside the cavity increases,

irrespective of Φ which can be visualized by maximum magnitude of streamlines.

The values of |ψ|max at Ra = 105 are 7.37, 8.47, 9.86 and 10.17 for Φ = 15◦, 30◦,

60◦ and 75◦, respectively (see Figure 3.3(a)-(d)).

Figure 3.4(a)-(d) illustrates the variation of inclination angles on isotherms and

streamlines at Ra = 105 and Pr = 998. It is noticed that the isotherms at the

lower section of wall DA and at the upper section of cold wall BC are highly

compressed for all value of inclination angle Φ. It may be seen that the streamline

contours occur in shape of enclosure near the walls, which contrasts the previous

case with Ra = 103 where it was observed in circular pattern. The streamlines

at the center of the cavity occur in almost elliptical shape for Φ = 30◦ 60◦ and

75◦, whereas almost dumbbell shape is observed in streamlines at Φ = 15◦. The

maximum magnitude of streamlines indicates that the fluid flow intensity inside
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the cavity is high compared to case (Pr = 0.025) for all values of Φ. At high

Prandtl number (Pr = 998), the values observed for |ψ|max are 14.35, 17.53, 23.49

and 24.85 for Φ = 15◦, 30◦, 60◦ and 75◦, respectively.

The influence of the physical parameters i.e., Ra = 103 and Pr (Pr = 0.025 and

998) with varying inclination angle Φ on heat transfer is illustrated in Figure 3.5.

For low Rayleigh number (Ra = 103), the declination in the graph of average

Nusselt number has been observed for all inclination angles.

In Figure 3.6, the average heat transfer against the inclination angle Φ and phys-

ical parameters i.e., Rayleigh (Ra = 105) and Prandtl number (Pr = 0.025 and

998) is plotted. At Pr = 0.025, the enhancement in Nuavg number has been ob-

served for Φ = 15◦ - 60◦ and it decreases for Φ = 75◦. For the case of high Prandtl

number, the rate of heat transfer enhanced for small inclination angles whereas

the opposite effect has been observed for the large values of Φ.

The influence of Ra on heat transfer rate is depicted in Figure 3.7. The augmenta-

tion in the Nuavg number is observed for both cases of Prandtl number. Maximum

values of heat transfer rate are found at high Ra (i.e. Ra = 105) due to strong

convection.
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Figure 3.2: Streamlines (left) and isotherms (right) contours for different
inclination angles (Φ) with Ra = 103 and Pr = 0.025.
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Figure 3.3: Streamlines (left) and isotherms (right) contours for different
inclination angles with Ra = 105 and Pr = 0.025.
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Figure 3.4: Streamlines (left) and isotherms (right) contours for different
inclination angles with Ra = 105 and Pr = 998.
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Figure 3.5: Impact of Φ on Nuavg number w.r.t Pr at fix Ra = 103.

Figure 3.6: Impact of Φ on Nuavg number w.r.t Pr at fix Ra = 105.

Figure 3.7: Impact of Ra number on Nuavg number w.r.t Pr at fix Φ = 15◦.



Chapter 4

Simulations of Natural

Convective Flow in a Square

Cavity with Non-linear Thermal

Radiation

Based on the literature, in spite of the different studies have been considered on

natural convection, there is a definite dearth of information regarding the natural

convection flow in inclined square cavities with thermal radiation effect. The aim

of the present work is to perform a numerical simulation of a two dimensional

laminar free convective flow in an inclined square cavity with non-linear thermal

radiation. In this chapter, we numerically find the solution for the steady and

incompressible natural convective flow in a square tilted cavity. By means of an

appropriate transformation, the governing equations are transformed into dimen-

sionless coupled PDEs and they have been solved with the same procedure as in

Chapter 3. The influence of governing parameters is analyzed through stream-

lines, isotherms and graphs. This work is an extension of the work presented in

Chapter 3.

37
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4.1 Problem Description and Mathematical

Formulation

Let us take a two-dimensional, steady and incompressible natural convective flow

in a tilted square cavity. The schematic diagram of the problem under considera-

tion with boundary conditions as shown in Figure 3.1. The cavity is tilted at an

inclination angle Φ with horizontal axis. Two parallel walls AB and CD of the

cavity are assumed to be adiabatic where the wall BC is kept cold at temperature

Tc (cold wall) and the wall DA of the enclosure is kept at high temperature Th

(hot wall). The enclosure is skewed at an angle Φ with horizontal axis. Under

these assumptions, the equations of continuity, momentum and energy equation

with non-linear thermal radiation takes the following form.

Continuity equation:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

x-momentum equation:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gβ(T − Tc) sin Φ, (4.2)

y-momentum equation:

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gβ(T − Tc) cos Φ, (4.3)

Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
− C1

(
∂qrx
∂x

+
∂qry
∂y

)
. (4.4)

Here ν represent the kinematic fluid viscosity, ρ is fluid density, α is the thermal
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diffusivity, the expansion coefficient is β, Φ is an inclination angle, fluid tem-

perature is T , Tc is the cold right wall temperature, acceleration due to gravity

is g, p is pressure of the fluid, C1 = 1
ρcp

and u, v denote the components of velocity.

The dimensional boundary conditions on each wall of the cavity for velocity and

temperature fields are given by

• On the horizontal walls AB and CD:

u(x, y) = 0, v(x, y) = 0,
∂T

∂n
= 0 (4.5)

• On the right wall CB:

u(x, y) = 0, v(x, y) = 0, T = Tc (4.6)

• On the left wall AD:

u(x, y) = 0, v(x, y) = 0, T = Th (4.7)

where n denote the normal vector.

4.1.1 Dimensionless Form of the Governing Equations

The dimensionless form of the Eqs. (4.1)-(4.4) may be obtained by using the fol-

lowing dimensionless parameters [14]

X = x
L

, Y = y
L

, U = uL
α

, V = vL
α

, P = pL2

ρα2 , θ = T−Tc
Th−Tc

,

Pr = ν
α

, Ra = gβ(Th−Tc)L3Pr
ν2

, Nr = Th
Tc

, Rd = 4σ∗T
3
c

a
R
κ

.
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The above parameters leads to the following dimensionless governing equations,

∂U

∂X
+
∂V

∂Y
= 0, (4.8)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+RaPrθ sin Φ, (4.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+RaPrθ cos Φ, (4.10)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂

∂X

(
∂θ

∂X
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
+

∂

∂Y

(
∂θ

∂Y
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
. (4.11)

The dimensionless boundary conditions on each wall of the cavity for velocity and

temperature fields are given by

• On the horizontal walls AB and CD:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂n
= 0 (4.12)

• On the right wall CB:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 0 (4.13)

• On the left wall AD:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1 (4.14)

where n denote the normal vector.

4.2 Numerical Method of Solution

The non-dimensional governing Eqs. (4.15)-(4.18) together with the boundary

conditions (4.19)-(4.21) have been carried out numerically by Galerkin finite el-

ement method using the bi-quadratic element Q2 for velocity and temperature,
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and discontinuous P1 element for pressure. First, the weak formulation of the

governing equations is derived and then the solution is approximated by using the

Galerkin approximation method.

Strong Form of Governing Equations:

∂U

∂X
+
∂V

∂Y
= 0, (4.15)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr

(
∂2U

∂X2
+
∂2U

∂Y 2

)
+RaPrθ sin Φ, (4.16)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+RaPrθ cos Φ, (4.17)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂

∂X

(
∂θ

∂X
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
+

∂

∂Y

(
∂θ

∂Y
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
. (4.18)

The Boundary Conditions are:

• On the horizontal walls AB and CD:

U(X, Y ) = 0, V (X, Y ) = 0,
∂θ

∂n
= 0 (4.19)

• On the right wall BC:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 0 (4.20)

• On the left wall DA:

U(X, Y ) = 0, V (X, Y ) = 0, θ = 1 (4.21)

where n denote the normal vector.
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Weak Formulation/Variational Form:

Finding a solution in strong form is not always possible and there may be no

smooth solution to a particular problem. To overcome these type of problems,

weak formulation is preferred to find approximate solution. The main concept of

weak formulation is turn the governing equations into integral equations. For the

deriavtion of weak form, first multiply both sides of momentum equations and the

temperature equation by test function w ∈ W and continuity equation is multi-

plied by test function q ∈ Q and then integrate over the whole domain. Where W

for (U ,V ) velocities, temperature and Q for pressure are test spaces as we used in

Chapter 3. Thus, the variational/weak formulation of Eqs. (4.15)-(4.18) reads as

follows

Find (U , V , θ, P ) ∈W×Q such that

∫
Ω

(
U
∂U

∂X
+ V

∂U

∂Y

)
wdΩ− Pr

∫
Ω

(
∂2U

∂X2
+
∂2U

∂Y 2

)
wdΩ

−RaPr sin Φ

∫
Ω

θwdΩ +

∫
Ω

∂P

∂X
wdΩ = 0, (4.22)∫

Ω

(
U
∂V

∂X
+ V

∂V

∂Y

)
wdΩ− Pr

∫
Ω

(
∂2V

∂X2
+
∂2V

∂Y 2

)
wdΩ

−RaPr cos Φ

∫
Ω

θwdΩ +

∫
Ω

∂P

∂Y
wdΩ = 0, (4.23)∫

Ω

(
∂U

∂X
+
∂V

∂Y

)
qdΩ = 0, (4.24)∫

Ω

(
U
∂θ

∂X
+ V

∂θ

∂Y

)
wdΩ−

∫
Ω

∂

∂X

(
∂θ

∂X
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
wdΩ

−
∫

Ω

∂

∂Y

(
∂θ

∂Y
(1 +

4C1

3
Rd(1 + (Nr − 1)θ)3)

)
wdΩ = 0. (4.25)

for all (w, q) ε W×Q.

In Galerkin discretization, the infinite dimensional test and trial spaces are ap-

proximated by finite dimensional spaces. In particular, following are the trial and

test spaces
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Trial Spaces:

U ≈ Uh, V ≈ Vh, θ ≈ θh and P ≈ Ph.

Test Spaces:

W ≈Wh, Q ≈ Qh.

The Galerkin discretization results into following non-linear discretized integral

equations

Pr

∫
Ω

(
∂Uh
∂X

∂wh
∂X

+
∂Uh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Uh
∂X

+ Vh
∂Uh
∂Y

)
whdΩ

−RaPr sin Φ

∫
Ω

θhwhdΩ +

∫
Ω

∂Ph
∂X

whdΩ = 0, (4.26)

Pr

∫
Ω

(
∂Vh
∂X

∂wh
∂X

+
∂Vh
∂Y

∂wh
∂Y

)
dΩ +

∫
Ω

(
Uh
∂Vh
∂X

+ Vh
∂Vh
∂Y

)
whdΩ

−RaPr cos Φ

∫
Ω

θhwhdΩ +

∫
Ω

∂Ph
∂Y

whdΩ = 0, (4.27)∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qhdΩ = 0, (4.28)∫

Ω

(
Uh
∂θh
∂X

+ V
∂θh
∂Y

)
whdΩ−

∫
Ω

∂

∂X

(
∂θh
∂X

(1 +
4C1

3
Rd(1 + (Nr − 1)θh)

3)

)
whdΩ

−
∫

Ω

∂

∂Y

(
∂θh
∂Y

(1 +
4C1

3
Rd(1 + (Nr − 1)θh)

3)

)
whdΩ = 0. (4.29)

In the next step, discretized test and trial functions are approximated by using

finite element approximations. Solving the above system of discrete integral equa-

tions lead to the following block matrix
Pr L+N(U, V ) 0 B1 −RaPr sin Φ M

0 Pr L+N(U, V ) B2 −RaPr cos Φ M

BT
1 BT

2 0 0

0 0 0 L+N(U, V )


︸ ︷︷ ︸

A


U

V

P

θ


︸ ︷︷ ︸

U

=


F 1

F 2

F 3

F 4


︸ ︷︷ ︸

F

(4.30)
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where,

Uh =
MM∑
j=1

Uj φj(x, y), Vh =
MM∑
j=1

Vj φj(x, y), θh =
MM∑
j=1

θj φj(x, y),

Ph =
MN∑
k=1

Pk Sk(x, y),

In the block matrix (4.30), L is the Laplace marix, M is mass matrix and N

is the convective matrix. B1 and B2 are the pressure matrices and BT
1 , BT

2 are

their corresponding transpose matrices. Velocity components and temperature are

discretized and pressure is approximated with the same element as in Chapter 3.

The coupled non-linear equation are linearized by the Picard iteration method and

Guassian elimination method is utilized to solve the associated linear subproblems.

The stopping criterion to the iterative scheme is given by∣∣∣∣Υn+1 −Υn

Υn+1

∣∣∣∣ ≤ 10−6, (4.31)

where n denotes the iteration number and Υ is used as variable to represent U ,

V , P , θ .

4.3 Results and Discussion

To study the thermal radiation effect on free convective heat transfer in inclined

square cavity, application of FEM is performed to solve governing equations by

applying the Galerkin finite element method. Under investigation of tilted cav-

ity (see 3.1) with two horizontal walls (DC and AB) are assumed to be adiabatic

in boundary condition and vertical walls with thermal boundary condition i.e; ac-

tivation of temperature on left wall(AD) and right wall(CB) cold. Simulations are

performed for two dimensional, steady and incompressible natural convective flow

with thermal radiation and presented in term of streamlines (left) and isotherms

(right) for different values of physical parameters. The governing parameters are

Prandtl number (Pr = 0.025 for mercury, Pr = 0.71 for air, Pr = 6.2 for water,
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Pr = 998 for glycerol), Rayleigh number (Ra = 102, 103, 104, 105), radiation pa-

rameter (Rd = 0, 1, 2, 3) with angle of inclination (Φ = 15◦, 30◦, 60◦, 75◦). Discrete

endeavour have been focused on the influence of these parameters. The strength

of motion inside the cavity in term of local and Nuavg number, numerical results

are presented for the various values of key parameters.

Figure 4.1(a)-(d) illustrate the effect of Rayliegh number (Ra = 102 − 105) on

streamlines and isotherms, while the other parameters kept fixed i.e., Pr = 0.025,

Φ = 15◦ and Rd = 1. From Figure 4.1(a), it can be observe that the hot fluid

rises to the wall DA of cavity due to the inclination effect of the enclosure. In this

case, the transfer of heat is mainly due to conduction as the isotherm counters are

uniformly distributed. It was examined that the concentration of streamlines is

very low due to conduction dominant heat transfer. It can be investigated through

Figure 4.1(b), with augmentation in the Ra causes a curvature in the isotherms.

The isotherms are semi-parallel to walls BC and DA of the cavity. A moderate

enhancement in the intensity of streamfunction is likewise investigated. The con-

vection heat switch mode starts at Ra = 104 due to which disturbance inside the

streamlines arise at the middle section of the enclosure. Further, augmented con-

vection patterns arise within the cavity for high (Ra = 105) and high deformation

in the isotherm contours arise at the middle section of cavity due to dominance of

convection. Within the cavity, streamlines arise nearly in a circular shape in all

cases. It is obvious from the maximum value of streamfuntion , the strength of

fluid flow increased inside the cavity with growth in Ra (see Figure 4.1 (a)-(d)).

For all cases taken under consideration the values observed for |ψ|max are 0.12,

1.17, 5.18 and 10.63 for Ra = 102, 103, 104, 105, respectively.

Influence of the various Pr (Pr = 0.025, 0.71, 6.2, 998) on streamlines and

isotherms in square tilted enclosure with Φ = 15◦, Rd = 1 and Ra = 104, is

displayed in Figure 4.2(a)-(d). With increase in prandtl number (Pr), the stream-

function rapidly grows in magnitude for low prandtl numbers (Pr = 0.025, 0.71)
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due to which disturbance occurs at the middle section of cavity and slightly in-

creases for high prandtl number (Pr = 6.2, 998) as |ψ|max = 5.18, 8.63, 8.76 and

8.78, respectively. For all the Pr, the compression in isotherms near the top sec-

tion of opposite wall CB and at the bottom section of wall AD is observed. The

counters of isotherms follows almost the similar pattern for all values of prandtl

number.

Effect of thermal radiation parameter (Rd = 0− 3) on streamlines and isotherms

distribution with Pr = 0.025, Φ = 15◦ and Ra = 104 is displayed in Figure 4.3(a)-

(d). Irrespective of the various radiation parameters, a single cell forms within the

cavity illustrating ascending flows closer to the hot vertical wall counters streamline

and isotherm are uniformly distributed. That’s why we can find rotation of fluid

close to left wall DA intensive in magnitude. Furthermore, close the hot wall DA

the cellular core arises due to convection at high temperature within the cavity.

With the increase in (Rd) assists to an enhancement of convection phenomenon

of heat transfer in addition to augmentation of heat conduction. At the centre of

cavity the bending behaviour of isotherm as well as the layers of thermal boundary

near to walls DA and BC reduces in (see in Figure 4.3 (c)-(d)). Under discussion

the values observed for |ψ|max are 4.29, 5.18, 5.46 and 5.56.

Figure 4.4 depicts the fluid flow for Φ = 15◦, Rd = 1 and Ra = 105 inside the cavity

with varying prandtl number (Pr = 0.025, 0.71, 6.2, 998) in term of streamlines

and isotherms. It is examined that the concentration of isotherms near to hot

wall DA increases which evident the increase in heat transfer (see in Figure 4.4 -

(b)). Medium of inclined square enclosure is exchange by different material having

high value of prandtl number, viscosity dominant effect can be seen in movement

of streamline downward (Figure 4.4 (c)-(d)). With varying prandtl number(Pr),

the streamfunction rapidly grows in magnitude for low prandtl numbers (Pr =

0.025, 0.71) due to which disturbance occurs at the middle section of cavity and

slightly increases for high prandtl number (Pr = 6.2, 998) as |ψ|max = 10.63, 21.04,

23.53 and 24.40, respectively. Figure 4.5(a)-(d) illustrates the fluid flow within

the enclosure for Pr = 0.025, Ra = 105 and Rd = 1 with varying the impact of

inclination angle. The buoyancy driven forces with the Rayleigh number increases



Natural Convective flow in a Cavity with Nonlinear Thermal Radiation 47

and thus convection at high Ra dominates in the enclosure. At Ra = 105, it is

noticed that the isotherms are distorted for all inclination angles at the middle

section of the cavity due to dominance of convection. In this case, the isotherms

for all Φ are noticed to be closed near the top of wall BC (cold wall) and the

bottom of left wall DA (hot wall). The streamlines contours follow the similar

circular pattern. The flow intensity inside the cavity increases, irrespective of Φ

which can be visualized by maximum magnitude of streamlines. The values of

|ψ|max at Ra = 105 are 10.63, 21.04, 23.53 and 24.40 for Φ = 15◦, 30◦, 60◦ and

75◦, respectively (see Figure 4.5(a)-(d)).

Impact of thermal radiation parameter (Rd) on streamlines and isotherms distri-

bution with Pr = 0.025, Φ = 15◦ and Ra = 105 is displayed in Figure 4.6(a)-(d).

In contrast to case (Ra = 104), the isotherms for all Rd are noticed to be closed

near the top of wall BC (cold wall) and at the bottom of left wall DA (hot wall).

Due to high Ra, buoyancy driven forces more effective with convection dominates

in cavity as well as intensity of streamfunction also rises in contrast to previous

case (Ra = 104). That’s why we can find rotation of fluid close to left wall DA

more intensive in magnitude. The streamlines contours follow the similar circular

pattern as in the previous case (Ra = 104). With enhancement in Rd, the stream-

function grows in magnitude as |ψ|max at Ra = 105 are 7.37, 10.63, 12.13 and 12.96

for Rd = 0, 1, 2, 3, 4. For all Rd, a single cell forms within the cavity illustrating

ascending flows close to the hot vertical wall counters streamline and isotherm are

uniformly distributed. Influence of the various inclination angle (Φ = 15◦, 30◦ 60◦

and 75◦) on fluid flow in an inclined cavity with Pr = 0.71, Rd = 1 and Ra = 103

is displayed in term of streamlines and isotherms distribution (see Figure 4.7(a)-

(d)). At Ra = 103, the isotherms are found to be slightly curved nature due to

inclination angle effect(Φ = 15◦, 30◦). For other inclination angles (Φ = 60◦, 75◦),

the isotherms are flattened closevto the top section of wall BC (cold wall) and

lower section of wall DA (hot wall). Due to increase in Pr the viscous effect is

dominant that yields flow of the fluid inside square cavity is weaker which can be

viewed by low intensity of streamlines. The flow strength with augmentation in
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inclination angle decreases at low Rayleigh number as |ψ|max = 1.26, 1.19, 0.75

and 0.40 for Φ = 15◦, 30◦, 60◦ and 75◦, respectively.

Figure 4.8(a)-(d) depicts the strong impact of Rayliegh number (Ra = 102−105) on

streamlines and isotherms, while the other parameters kept fixed i.e., Pr = 0.71,

Φ = 15◦ and Rd = 1. From Figure 4.8(a), it can be observe that the hot fluid rises

to the wall DA of cavity due to the inclination effect of the enclosure. In this case,

the transfer of heat is mainly due to conduction as the isotherm counters are uni-

formly distributed. It was examined that the concentration of streamlines is low

due to the effect of conduction governing heat transfer. In contrast to previous

case (Pr = 0.025), it can be investigated through Figure 4.8(b), with augmen-

tation in the Ra causes a more inclination in the isotherms. The isotherms are

semi-parallel to walls BC and DA of the enclosure. A compareable enhancement

in the intensity of streamfunction is likewise noticed. The convection heat switch

mode starts at Ra = 104 due to which disturbance inside the streamlines arises

at the middle section of the enclosure. Further, enhanced convection patterns

arise within the cavity for high (Ra = 105) and high deformation in the isotherm

contours arise at the middle section of enclosure and thus convection dominates.

Within the cavity, streamlines arise nearly in a circular shape in all cases. It is

obvious from the maximum value of streamfuntion , the strength of fluid flow in-

creased inside the cavity with growth in Ra (see in Figure 4.8 (a)-(d)). For all

cases taken under consideration the values observed for |ψ|max are 0.12, 1.26, 8.63

and 21.04 for Ra = 102, 103, 104, 105, respectively.

Effect of thermal radiation parameter (Rd = 0− 4) on streamlines and isotherms

distribution with Pr = 0.71, Φ = 15◦ and Ra = 104 is displayed in Figure 4.9(a)-

(d). We can find rotation of fluid close to left wall DA intensive in magnitude.

Furthermore, close the hot wall DA the cellular core arises due to convection at

high temperature witin the cavity. With the enhancement in radiation parameter

assists to an augmentation of both convection phenomenon of heat transfer and

heat conduction in addition to the attenuation of size of core of convection. At the

centre of cavity the bending behaviour of isotherm as well as the layers of thermal
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boundary near to walls DA and BC reduces in (see in Figure 4.9 (c)-(d)). Un-

der discussion the values observed for |ψ|max are 6.03, 8.63, 10.06 and 10.92. For

Pr = 0.71, Rd = 1 and Ra = 105 ,the Figure 4.10(a)-(d) illustrates the fluid flow

inside the cavity with varying inclination angles(φ). The buoyancy driven forces

with the Rayleigh number increases and thus convection at high Ra dominates in

the cavity. At Ra = 105, it is investigated that the isotherms are distorted for

all inclination angles at the middle section of the enclosure due to dominance of

convection. In this case (Ra = 105), the isotherms for all Φ are observed to be

compressed near the top of wall BC (cold wall) and the bottom of left wall DA

(hot wall). The streamlines contours, follow the high distortion (see in Figure

4.10 (a)-(b)) while similar circular pattern (see in Figure 4.10 (c)-(d)). The flow

intensity inside the cavity gradually increases, irrespective of Φ which can be visu-

alized by maximum magnitude of streamlines. The values of |ψ|max at Ra = 105

are 21.04, 26.69, 34.85 and 36.43 for Φ = 15◦, 30◦, 60◦ and 75◦, respectively (see

Figure 4.10(a)-(d))

Impact of thermal radiation parameter (Rd) on streamlines and isotherms distri-

bution with Pr = 0.71, Φ = 15◦ and Ra = 105 is displayed in Figure 4.11(a)-(d).

The isotherms for all Rd are noticed to be compressed close to the top of wall BC

(cold wall) and the bottom of left wall DA (hot wall). Due to high Ra = 105,

buoyancy driven forces more effective with high convection dominates in cavity

as well as intensity of streamfunction also rapidly rises in contrast to previous

case (Ra = 104). The streamlines contours follow the distorted distribution for

Rd = 0, 1 and similar circular pattern for Rd = 2, 3 as in the previous case

(Ra = 104). With enhancement in Rd, the streamfunction grows in magnitude as

|ψ|max at Ra = 105 are 12.20, 21.04, 28.97 and 35.30 for Rd = 0, 1, 2, 3, 4.

Figure 4.12-4.20 dipicts the average Nusselt number (Nuavg) distribution along the

left wall DA for various values of Pr, Φ, Rd and Ra. The influence of prandtl on

average Nusselt number can be visualized through Figure 4.12 for various cases of

Ra. The average Nusselt number increases in significant behaviour by keeping the

values of inclination angle and thermal radiation parameter fixed i.e., Φ = 15◦ and
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Rd = 1. This is due to the fact that convection is dominant inside the enclosure

resulting enhancement in the rate of heat transfer.

In Figure 4.13, the variation in inclination angle against average Nusselt number

has been depicted w.r.t Rayleigh number. The average Nusselt number first in-

creases for inclination angles Φ = 15◦, 30◦ then a light decrease is observed for

Φ = 60◦ and it further decreases for Φ = 75◦. The impact of non-linear thermal

radiation parameter considering different cases of Ra for the heat transfer rate

can be visualized through Figure 4.14. Values of inclination angle and thermal

radiation parameter are kept fixed i.e., Φ = 15◦ and Rd = 1. The average Nusselt

number first increases gradually for Rd = 0, 1 and it slightly increses for Rd = 2, 3.

In Figure 4.15, the variation in inclination angle against average Nusselt number

has been depicted w.r.t prandtl number. For fixed value of radiation parameter

and Rayleigh number i.e., Rd = 1 and Ra = 103 , the average Nusselt number

first slightly decreases for Φ = 15◦, 30◦ and decreases gradually for Φ = 60◦, 75◦.

In Figure 4.16, the variation in inclination angle against average Nusselt number

has been depicted w.r.t prandtl number. For fixed value of radiation parameter

and Rayleigh number i.e., Rd = 1 and Ra = 104 , the average Nusselt number

first increases for Φ = 15◦, 30◦ and decreases slightly for Φ = 60◦ further gradually

decreases for 75◦.

In Figure 4.17, the variation in inclination angle against average Nusselt number

has been depicted w.r.t prandtl number. For fixed value of radiation parameter

and Rayleigh number i.e., Rd = 1 and Ra = 105 , the average Nusselt number

first decreases slightly for Φ = 15◦, 30◦ and further decreases for Φ = 60◦, 75◦.

In Figure 4.18, shows the impact of radiation parameter on Nuavg number for

various cases of prandtl number. The Nuavg number increases for fix value of

inclination angle and Rayleigh number i.e., Φ = 15◦ and Ra = 104.

In Figure 4.19, shows the variation of Rd on Nuavg number for various cases of

prandtl number. The Nuavg number increases for fix value of inclination angle

and Rayleigh number i.e., Φ = 15◦ and Ra = 105.
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The impact of Rayleigh number for different cases of prandtl parameter on the

heat transfer rate can be visualized through Figure 4.20. Values of inclination

angle and thermal radiation parameter are kept fixed i.e., Φ = 15◦ and Rd = 1.

The increment in Nuavg number is observed by increasing the Ra. This is due to

the fact that convection is dominant inside the cavity for high Rayleigh numbers

(Ra ≥ 104) resulting increase in the rate of heat transfer.
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Figure 4.1: Influence of Rayleigh number (Ra = 102 − 105) on streamlines
(left) and isotherms (right) with parameters Pr = 0.025, Φ = 15◦, Nr = 1.1

and Rd = 1.
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Figure 4.2: Impact of Pr on streamlines (left) and isotherms (right) at Φ =
15◦, Nr = 1.1, Rd = 1 and Ra = 104.
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Figure 4.3: Impact of Radiation parameter (Rd) on streamlines (left) and
isotherms (right) with Pr = 0.025, Φ = 15◦, Nr = 1.1 and Ra = 104.
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Figure 4.4: Impact of prandtl number (Pr) on streamlines (left) and isotherms
(right) with parameters Φ = 15◦, Nr = 1.1, Rd = 1 and Ra = 105.
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Figure 4.5: Impact of inclination angles (Φ) on streamlines (left) and
isotherms (right) with parameters Pr = 0.025, Nr = 1.1, Rd = 1 and Ra = 105.
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Figure 4.6: Impact of Radiation parameter (Rd) on streamlines (left) and
isotherms (right) with Pr = 0.025, Φ = 15◦, Nr = 1.1 and Ra = 105.
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Figure 4.7: Impact of inclination angles (Φ) on streamlines (left) and
isotherms (right) with parameters Pr = 0.71, Nr = 1.1, Rd = 1 and Ra = 103.
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Figure 4.8: Influence of Rayleigh number (Ra = 102 − 105) on streamlines
(left) and isotherms (right) with parameters Pr = 0.71, Φ = 15◦, Nr = 1.1

and Rd = 1.
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Figure 4.9: Impact of Radiation parameter (Rd) on streamlines (left) and
isotherms (right) with Pr = 0.71, Φ = 15◦, Nr = 1.1 and Ra = 104.
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Figure 4.10: Impact of inclination angles (Φ) on streamlines (left) and
isotherms (right) with parameters Pr = 0.71, Nr = 1.1, Rd = 1 and Ra = 105.
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Figure 4.11: Impact of Rd on streamlines (left) and isotherms (right) with
Pr = 0.71, Φ = 15◦, Nr = 1.1 and Ra = 105.
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Figure 4.12: Impact of Pr number on Nuavg number w.r.t Ra with Rd = 1.

Figure 4.13: Impact of Φ on Nuavg number w.r.t Ra and Pr = 0.025.

Figure 4.14: Effect of Rd on Nuavg number w.r.t Ra at fix Φ = 15◦.
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Figure 4.15: Effect of Φ on Nuavg number w.r.t Pr at fix Ra = 103.

Figure 4.16: Effect of Φ on Nuavg number w.r.t Pr at fix Ra = 104.

Figure 4.17: Effect of Φ on Nuavg number w.r.t Pr at fix Ra = 105.
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Figure 4.18: Impact of Rd on Nuavg number w.r.t Pr at fix Ra = 104.

Figure 4.19: Effect of Rd on Nuavg number w.r.t Pr at fix Ra = 105.

Figure 4.20: Influence of Ra on Nuavg number w.r.t Pr at fix Φ = 15◦.



Chapter 5

Conclusion

In this dissertation, the analysis of two dimensional steady and incompressible nat-

ural convection flow under the impact of non-linear thermal radiation is executed in

a tilted square cavity. The cavity is considered with adiabatic walls at the top and

bottom, hot wall on the left and cold wall on the right side. The governing dimen-

sional PDEs developed for the heat exchange and fluid flow are first transformed

into dimensionless PDEs by using an appropriate transformation. These equations

are discretized and solved numerically by employing Galarkin finite elements tech-

nique. The finite element Q2(biquadratic element) is used for velocity and temper-

ature and P disc
1 is for pressure term. The impact of emerging parameters including

Prandtl number, Rayleigh number and thermal radiation with inclination angles

on the heat transfer and fluid flow has been thoroughly observed. Comparisons

and results were found to be in good agreement discussed in literature. Graphical

illustrations were presented to clarify the conclusions in clear way. Isotherms and

streamlines were shown by the variation of inclination angle(Φ = 15◦, 30◦, 60◦, 75◦),

Prandtle number (Pr = 0.025, 6.2, 0.71 and 998), radiational parameter (Rd = 0,

1, 2 and 3) and Rayleigh number (Ra = 103, 104, 105). The numerical simulations

of the dimensionless velocity and temperature are analyzed by using the stream-

lines and isotherms, respectively, while the Nuavg number is viewed by some useful

plots against different physical parameters and inclination angle.

66
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We extended the work of Basak et al. [14] with an idea of thermal radiatinal

parameters to incorporate as shown in energy equation(4.4). The impact of ra-

diation parameter on the flow by means of streamlines and isotherms has been

observed. The average Nusselt number against the heat radiation parameter is

also analyzed by Matlab plots. Concluding all valuable results obtained through

numerical simulations leads to the following points.

• The convective forces for high Rayleigh number (Ra ≥ 104) enhanced inside

the cavity. At high Rayleigh number, an increment in the flow of fluid and

heat is observed due to the strong convection for all considered cases of Rd.

Large values are noticed for the magnitude of streamfunction at the center

of the cavity irrespective of the prandtl number (Pr) and inclination angle

(Φ).

• With enhancement in Rd yields augmentation in rate of convective flow,

attenuation in the size of thermal boundary layer as well as convective cores.

For excessive values of Rd, the conduction of heat dominating the mechanism

of heat transfer and on the otherhand reduces in the inclination of isotherms.

• The intensity of flow and rate of heat transfer are greater in magnitude for

air but lower for mercury.

• Nuavg increases with enhancement in Pr, Rd and Ra, but decreases for

increasing values of inclination angle (Φ).

5.1 Future Recommendations

The analysis performed in this thesis can be further extended in the following

directions:

1. Analyzing the impact of porous media.

2. To perform the non-stationary simulation.
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3. Apply the higher order finite elements in space.

4. Apply the Galerkin discretization scheme for temporal discretization.
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